The characteristic of materials with special strength and toughness is distinguished by the uniform arrangement of their multi‐level structures, which is a key factor that significantly affects their mechanical behavior and overall performance. This work explores the challenges and potential solutions to enhance the mechanical properties of hydrogels through the construction of multi‐scale, multi‐layered ordered uniform structures. A novel approach termed macromolecular network uniformization (MNU) that utilizes rotation ice templates to freeze‐cast uniform polymer networks in hydrogels is proposed. By integrating this process with salt‐out densification, hydrogels with exceptional toughness exceeding 350 MJ m⁻3 in both x and y directions with super‐high tensile stress (20 MPa) and strain at break (3000%), are obtained. This research effectively addresses the inherent limitation of hydrogel materials, which are primarily composed of hydrophilic polymers, limiting their potential for functional diversity and enhanced performance. To overcome this, the expansion of the hydrogel matrix is demonstrated to include hydrophobic polymers such as polycaprolactone (PCL) and polyacrylonitrile (PAN), thanks to the high solubility of DMSO. The MNU technique effectively produces high‐performance hydrogels with enhanced mechanical properties, increasing substrate diversity and enabling the development of durable hydrogel materials for various applications.