Critical (choked) flow is a highly concerning phenomenon in safety analysis for nuclear energy. The discharge mass flow rate prediction is crucial for engineering design and emergency response in case of nuclear accidents. Unfortunately, the critical flow is difficult to predict especially when the two-phase flow exists. The accuracy is based on a deeper understanding of the complex phenomenon of critical flow. The influence of virtual mass force on the two-phase critical flow was seldom concentrated on owing to the lack of suitable critical flow models for studies in detail. This study is based on a developed 6-equation two-phase critical flow model. It is confirmed that the virtual mass force contributes to the stability and convergence of the critical flow simulation and it will impact not only the critical mass flux but also the thermal hydraulic parameters along the discharge duct. The magnitude depends on the geometry of the discharge duct and the upstream condition. It is larger when the duct is longer and the pressure is lower. Furthermore, the virtual mass force for each flow regime was studied in detail with a sensitivity study. The results show that the most sensible condition for the virtual mass force is annular flow along a long tube under relatively low pressure. The future work is to develop a correlation of virtual mass force for critical flow specifically since the correlations in the literature were developed under general two-phase flow process conditions.