Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The present study evaluated polar organic chemical integrative samplers (POCIS) for quantification of conventional munitions constituents, including trinitrotoluene (TNT), aminodinitrotoluenes, diaminonitrotoluenes, dinitrotoluene, and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a field setting. The POCIS were deployed at varying distances from the commonly used explosive formulation composition B (39.5% TNT, 59.5% RDX, 1% wax) in an embayment of Santa Rosa Sound (Pensacola, FL, USA). Time-weighted averaged water concentrations from a 13-d deployment ranged from 9 to 103 ng/L for TNT and RDX, respectively, approximately 0.3 to 2 m from the source. Concentrations decreased with increasing distance from the source to below quantitation limits (5-7 ng/L) at stations greater than 2 m away. Moderate biofouling of POCIS membranes after 13 d led to a subsequent effort to quantify potential effects of biofouling on the sampling rate for munitions constituents. After biofouling was allowed to occur for periods of 0, 7, 14, or 28 d at the field site, POCIS were transferred to aquaria spiked with munitions constituents. No significant differences in uptake of TNT or RDX were observed across a gradient of biofouling presence, although the mass of fouling organisms on the membranes was statistically greater for the 28-d field exposure. The present study verified the high sensitivity and integrative nature of POCIS for relevant munitions constituents potentially present in aquatic environments, indicating that application at underwater military munitions sites may be useful for ecological risk assessment. Environ Toxicol Chem 2018;37:2257-2267. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
The present study evaluated polar organic chemical integrative samplers (POCIS) for quantification of conventional munitions constituents, including trinitrotoluene (TNT), aminodinitrotoluenes, diaminonitrotoluenes, dinitrotoluene, and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a field setting. The POCIS were deployed at varying distances from the commonly used explosive formulation composition B (39.5% TNT, 59.5% RDX, 1% wax) in an embayment of Santa Rosa Sound (Pensacola, FL, USA). Time-weighted averaged water concentrations from a 13-d deployment ranged from 9 to 103 ng/L for TNT and RDX, respectively, approximately 0.3 to 2 m from the source. Concentrations decreased with increasing distance from the source to below quantitation limits (5-7 ng/L) at stations greater than 2 m away. Moderate biofouling of POCIS membranes after 13 d led to a subsequent effort to quantify potential effects of biofouling on the sampling rate for munitions constituents. After biofouling was allowed to occur for periods of 0, 7, 14, or 28 d at the field site, POCIS were transferred to aquaria spiked with munitions constituents. No significant differences in uptake of TNT or RDX were observed across a gradient of biofouling presence, although the mass of fouling organisms on the membranes was statistically greater for the 28-d field exposure. The present study verified the high sensitivity and integrative nature of POCIS for relevant munitions constituents potentially present in aquatic environments, indicating that application at underwater military munitions sites may be useful for ecological risk assessment. Environ Toxicol Chem 2018;37:2257-2267. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Humic acid substances (HAs) in natural soil and sediment environments affect the retention and degradation of insensitive munition compounds and legacy high explosives (MCs): 2,4-dinitroanisole (DNAN), DNi − NH 4 +, N-methyl-p-nitroaniline (nMNA), 1-nitroguanidine (NQ), 3nitro-1,2,4-triazol-5-one (NTO; neutral and anionic forms), 2,4,6-trinitrotoluene (TNT), and 1,3,5-trinitro-1,3,5-triazinane (RDX). A humic acid model compound has been considered using molecular dynamics, thermodynamic integration, and density functional theory to characterize the munition binding ability, ionization potential, and electron affinity compared to that in the water solution. Humic acids bind most compounds and act as both a sink and source for electrons. Ionization potentials suggest that HAs are more susceptible to oxidation than the MCs studied. The electron affinity of HAs is very conformation-dependent and spans the same range as the munition compounds. When HAs and MCs are complexed, the HAs tend to radicalize first, thus buffering MCs against reductive as well as oxidative attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.