Background
Interindividual variation characterizes the relief experienced by constipation-predominant irritable bowel syndrome (IBS-C) patients following linaclotide treatment. Complex bidirectional interactions occur between the gut microbiota and various clinical drugs. To date, no established evidence has elucidated the interactions between the gut microbiota and linaclotide. We aimed to explore the impact of linaclotide on the gut microbiota and identify critical bacterial genera that might participate in linaclotide efficacy.
Methods
IBS-C patients were administered a daily linaclotide dose of 290 µg over six weeks, and their symptoms were then recorded during a four-week posttreatment observational period. Pre- and posttreatment fecal samples were collected for 16S rRNA sequencing to assess alterations in the gut microbiota composition. Additionally, targeted metabolomics analysis was performed for the measurement of short-chain fatty acid (SCFA) concentrations.
Results
Approximately 43.3% of patients met the FDA responder endpoint after taking linaclotide for 6 weeks, and 85% of patients reported some relief from abdominal pain and constipation. Linaclotide considerably modified the gut microbiome and SCFA metabolism. Notably, the higher efficacy of linaclotide was associated with enrichment of the Blautia genus, and the abundance of Blautia after linaclotide treatment was higher than that in healthy volunteers. Intriguingly, a positive correlation was found for the Blautia abundance and SCFA concentrations with improvements in clinical symptoms among IBS-C patients.
Conclusion
The gut microbiota, especially the genus Blautia, may serve as a significant predictive microbe for symptom relief in IBS-C patients receiving linaclotide treatment.
Trial registration: This trial was registered with the Chinese Clinical Trial Registry (Chictr.org.cn, ChiCTR1900027934).