Clinical prediction models are created to help clinicians with medical decision making, aid in risk stratification, and improve diagnosis and/or prognosis. With growing availability of both prehospital and in‐hospital observational registries and electronic health records, there is an opportunity to develop, validate, and incorporate prediction models into clinical practice. However, many prediction models have high risk of bias due to poor methodology. Given that there are no methodological standards aimed at developing prediction models specifically in the prehospital setting, the objective of this paper is to describe the appropriate methodology for the derivation and validation of clinical prediction models in this setting. What follows can also be applied to the emergency medicine (EM) setting. There are eight steps that should be followed when developing and internally validating a prediction model: (1) problem definition, (2) coding of predictors, (3) addressing missing data, (4) ensuring adequate sample size, (5) variable selection, (6) evaluating model performance, (7) internal validation, and (8) model presentation. Subsequent steps include external validation, assessment of impact, and cost‐effectiveness. By following these steps, researchers can develop a prediction model with the methodological rigor and quality required for prehospital and EM research.