“…It was evident that it may easily create composites with various metals (N 2 , O 2 , Si, etc), compounds (Al 2 O 3 , Fe 3 O 4 , etc), carbonaceous materials (biochar, carbon nanotubes, graphene, graphene oxide, activated carbon, etc), and agrowaste (coconut husk, tea, etc). Chitosan's thermal and mechanical stability can be increased by utilizing grafting and cross-linking agents and various biopolymers such as cellulose [147,[154][155][156][157][158][159]. Chitosan derived from chitin can be modified using a variety of synthesis techniques (electrospraying, electrospinning, ionotropic gelation, reverse micelle, and spray drying), allowing it to be used in a variety of fields, including agriculture, biomedical, agro-waste management, water treatment, microbial fuel cells, cosmetics, textiles, paper, and pulp.…”