Wood exhibits a limited elastic deformation capacity under external forces due to its small range of elastic limit, which restricts its widespread use as an elastic material. This study presents the development of a stretchable wood-based elastomer (SWE) that is highly mechanical and flexible, achieved without the use of chemical cross-linking. Balsa wood was utilized as a raw material, which was chemically pretreated to remove the majority of the lignin and create a more abundant pore structure, while exposing the active hydroxyl groups on the cellulose surface. The polyvinyl alcohol (PVA) solution was impregnated into delignified wood, resulting in the formation of a cross-linked structure through multiple freeze–thaw cycles. After eight cycles, the tensile strength in the longitudinal direction reached up to 25.68 MPa with a strain of ~463%. This excellent mechanical strength is superior to that of most wood-based elastomers reported to date. The SWE can also perform complex deformations such as winding and knotting, and SWE soaked in salt solution exhibits excellent sensing characteristics and can be used to detect human finger bending. Stretchable wood-based elastomers with high mechanical strength and toughness have potential future applications in biomedicine, flexible electronics, and other fields.