Temperature-induced solder joint fatigue is a main reliability concern for aerospace and military industries whose electronic equipment used in the field is required to remain functional under harsh loadings. Due to the RoHS directive, which eventually will prevent lead from being utilized in electronic systems, there is a need for a better understanding of lead-free thermomechanical behavior when subjected to temperature variations. Characterizing solder joints properties remains a challenge as viscoplastic behavior during thermal cycling is complex, and their small dimensions prevent direct measurements from being performed. This paper reports the experimentation based on strain gage measurements, allowing the construction of the shear stress–strain hysteresis loop corresponding to Sn3.0Ag0.5Cu (SAC305) solder joints behavior during thermomechanical loading. This methodology, initially developed in 1984 by Hall for Sn60Pb40 interconnects, allows the measurement of the strain energy density dissipated during temperature cycles. Custom daisy-chained 76 I/O ceramic ball grid array (CBGA76) components were designed and assembled on flame retardant (FR-4) multilayered printed circuit boards (PCB). Four strain gages were specifically placed at the center of the assembly on top and bottom faces of both PCB and CBGA76 component. The assembly was subjected to temperature cycles and the SAC305 solder joints shear stress–strain hysteresis loop was plotted. The correlation between the measured strain energy density and measured lifetime corresponds to one point of the energy based fatigue curve for SAC305 solder joints. The hysteresis loop also provides the necessary data to derive SAC305 solder joints constitutive laws.