This paper presents the process of creating a model for electric vehicle (EV) energy consumption, enabling the rapid generation of results and the creation of energy maps. The most robust validation indicators were exhibited by an artificial intelligence method, specifically neural networks. Within this framework, two predictive models for EV energy consumption were developed for winter and summer conditions, based on actual driving cycles. These models hold particular significance for microscale road analyses. The resultant model, for test data in summer conditions, demonstrates validation indicators of an R2 of 86% and an MSE of 1.4, while, for winter conditions, its values are 89% and 2.8, respectively, confirming its high precision. The paper also presents exemplary applications of the developed models, utilizing both real and simulated microscale data. The results obtained and the presented methodology can be especially advantageous for decision makers in the management of city roads and infrastructure planners, aiding both cognitive understanding and the better planning of charging infrastructure networks.