Dusty plasmas, which are systems comprising plasmas and dust particles, have emerged in various fields such as astrophysics and semiconductor processes. The fine particles possibly form ordered structures, namely, plasma crystals, which have been extensively studied as a model to observe statistical phenomena. However, the structures of the plasma crystals in ground-based experiments are two-dimensional (2D) because of the anisotropy induced by gravity. Microgravity experiments successfully provided opportunities to observe the novel phenomena hidden by gravity. The dusty plasmas generated in supercritical fluids (SCFs) are proposed herein as a means for realizing a pseudo-microgravity environment for plasma crystals. SCF has a high and controllable density; therefore, the particles in SCF can experience pseudo-microgravity conditions with the aid of buoyancy. In this chapter, a study on the particle charging and the formation of the plasma crystals in supercritical CO 2 , the realization of a pseudo-microgravity environment, and the outlook for the dusty plasmas in SCF are introduced. Our studies on dusty plasmas in SCF not only provide the pseudo-microgravity conditions but also open a novel field of strongly coupled plasmas because of the properties of media.