High penetration levels of Plug-in Electric Vehicles (PEVs) could cause stress on the network and might violate the limits and constraints under extreme conditions, such as exceeding power and voltage limits on transformers and power lines. This paper defines extreme conditions as the state of a load or network that breaks the limits of the constraints in an optimization model. Once these constraints are violated, the optimization algorithm might not work correctly and might not converge to a feasible solution, especially when the complexity of the system increases and includes nonlinearities. Hence, the algorithm may not help in mitigating the impact of penetrating PEVs under extreme conditions. To solve this problem, an original algorithm is suggested that is able to adapt the constraints’ limits according to the energy demand and the energy needed to charge the PEVs. Different case scenarios are studied for validation purposes, such as charging PEVs under different state of charge levels, different energy demands at home, and different pricing mechanisms. Results show that our original algorithm improved the profiles of the voltage and power under extreme conditions. Hence, the algorithm is able to improve the integration of a high number of PEVs on the distribution system under extreme conditions while preserving its stability.