Enhanced oil recovery (EOR) is a general application used in mature oil fields to generate additional reserve growth. Several types of EOR applications are implemented in the oil industry. One such application is the injection of gas into a reservoir as a gas displacement recovery (GDR) mechanism to induce additional reserve growth. A specific type of GDR application is the immiscible water-alternatinggas (IWAG) displacement process. In this application a slug of water is put into an injection well, followed by gas, which exists as a separate phase from the water and oil. Water and gas injection slugs are alternated until the designed amount of gas has been injected, or as field production dictates. Continuous water (case water) is typically injected after the IWAG process.Herein, the state-of-art of IWAG EOR is described from an extensive literature review. First, the theories of the recovery mechanisms that cause IWAG to produce incremental oil are described. These mechanisms include viscosity reduction, 3-phase relative permeability, oil swelling, and oil film flow, all of which are a function of fluid and rock-fluid interactions. Next, salient laboratory studies are summarized, including micromodel and core floods. These studies test pore-level characteristics, displaying ranges of residual non-wetting phase saturations (hydrocarbons) down to 0.13 to 0.25 and incremental oil recovery ranging from 14% to 20% of OOIP. Some experiments isolate a specific recovery mechanism in order to determine its validity and contribution to recovery. Studies generally point to the conclusion that the gas type shows no discernable difference in recovery character.The paper concludes with a synopsis of results from small-scale field trials and field-scale projects in both heavy and light oil. Both simulation modeling and field trials are summarized. Projects have been implemented with varying types of gases, WAG ratios, and gas slug sizes, resulting in incremental reserve growth being reported in the range of 2 to 9%. The fundamental immiscible recovery mechanisms in IWAG can produce lower cost and faster response EOR projects, with moderate recovery efficiency gains.• N 2 • CO 2 • Flue gas (a combination of several gases from combustion) • Hydrocarbon gas, lean and enriched • Air SPE-179604-MS