The use of piles is a common method for establishing deep foundations for bridges where there is a top layer of weak soil. Among various types of pile and installation methods, driving prestressed-precast concrete piles (PPCP) is a durable and economical option compared with the alternatives. Also, since the method employs pile segments prefabricated in precast plants and delivered to the site for installation, it conforms to the principles of Accelerated Bridge Construction (ABC) and provides a rapid alternative to other methods. However, often because of limitations on shipping and transportation, the length of precast prestressed pile segments that can be delivered to the bridge site has to be reduced. Also, headroom limitations for pile driving may limit the length of pile segments such that establishing adequate resistance may not be achieved with one segment. Therefore, splicing of pile segments has to be performed at the site to produce longer lengths. A study carried out as part of research activities at the Accelerated Bridge Construction University Transportation Center (ABC-UTC) at Florida International University has reviewed various types of available pile splices and attempted to build on the experiences gathered for ABC connections to introduce an alternative configuration for splicing PPCP segments. Accordingly, a variation of grouted bar splice was introduced and designed to provide PPCPs with a time-effective, economical, and labor-friendly method of splicing. The proposed connection is completely new for connecting PPCP segments. Because many of PPCPs are driven in a marine environment, the application of corrosion-resistant material at the splice system is also emphasized. The paper summarizes these investigations. The results of this study show that the newly developed systems can provide the required strength in bending, tension, and compression with smaller sizes and numbers of bars. It also makes the installation faster and easier compared with the current methods.