A B S T R A C TFiber reinforced composites are increasingly used in several fields such as aeronautics and civil engineering due to their increased strength, durability, corrosion resistance, resistance to fatigue and damage tolerance characteristics. The embedding of sensor networks into such composite structures can be achieved. In the present study, glass fiber reinforced Epoxy composite with integrated strain gage was analysed. Firstly, the mechanical behaviour of this material with embedded strain gage is investigated. The as-prepared samples have been tested under tensile and flexural loading in order to study the effects of the strain gage embedding on the structural stiffness and strength of the composite. It was found that the tensile stiffness decreases by 5.8% and the tensile strength decrease by 1.5% when the strain gage embedded in the material. On the other hand, the flexural strength and stiffness is increased, respectively, by 1.5% and 5.5% with an embedded strain gage. The experiments showed that embedded strain gage is functional and demonstrated the successful integration of sensor networks into composite parts. The obtained results confirm that integrated strain gage can be used for the Structural Health Monitoring (SHM) of glass fiber reinforced Epoxy composite.