The cement sector is the second largest contributor to anthropogenic CO2 emissions, and several efforts have been made to reduce its environmental impact. One alternative that has gained interest in recent years involves the use of municipal solid waste incineration (MSWI) bottom ash (BA) as clinker/cement replacement. This paper studies the application of MSWI BA in three different ways: (i) aggregate (0 to 100 v/v %), (ii) partial binder substitute (0 to 30 v/v %), and (iii) filler (5 v/v %). It stands out for its approach in characterizing seven distinct BA particle sizes and for the development and analysis of eco-cement mortars with only mechanically pre-treated BA. Hardened state properties showed that the use of BA as aggregate leads to deterioration and efflorescence formation on the surface of the mortars, making this application unfeasible. The replacement of 15 v/v % of OPC (Ordinary Portland Cement) by BA and the use of finer (<63 μm) BA as filler caused a decrease in the compressive strength of the mortar, from 15.8 to 9.3 and 11.0, respectively. However, these materials are suitable for use in walls where the minimum required mechanical resistance is 5 MPa. Furthermore, these mortars demonstrated resilience against freeze–thaw cycles and even exhibited increased compressive strength after 25 cycles. Thus, this work showed that MSWI BA can be used as an OPC substitute (up to 15 v/v %) and as a filler, promoting circular economy principles and reducing CO2 emissions related to the construction industry.