The sand cat is a creature suitable for living in the desert. Sand cat swarm optimization (SCSO) is a biomimetic swarm intelligence algorithm, which inspired by the lifestyle of the sand cat. Although the SCSO has achieved good optimization results, it still has drawbacks, such as being prone to falling into local optima, low search efficiency, and limited optimization accuracy due to limitations in some innate biological conditions. To address the corresponding shortcomings, this paper proposes three improved strategies: a novel opposition-based learning strategy, a novel exploration mechanism, and a biological elimination update mechanism. Based on the original SCSO, a multi-strategy improved sand cat swarm optimization (MSCSO) is proposed. To verify the effectiveness of the proposed algorithm, the MSCSO algorithm is applied to two types of problems: global optimization and feature selection. The global optimization includes twenty non-fixed dimensional functions (Dim = 30, 100, and 500) and ten fixed dimensional functions, while feature selection comprises 24 datasets. By analyzing and comparing the mathematical and statistical results from multiple perspectives with several state-of-the-art (SOTA) algorithms, the results show that the proposed MSCSO algorithm has good optimization ability and can adapt to a wide range of optimization problems.