The role of impact interface characteristics on the biomechanics and patterns of cranial fracture has not been investigated in detail, and especially for the pediatric head. In this study, infant porcine skulls aged 2-19 days were dropped with an energy to cause fracturing onto four surfaces varying in stiffness from a rigid plate to one covered with plush carpeting. Results showed that heads dropped onto the rigid surface produced more extensive cranial fracturing than onto carpeted surfaces. Contact forces generated at fracture initiation and the overall maximum contact forces were generally lower for the rigid than carpeted impacts. While the degree of cranial fracturing from impacts onto the heavy carpeted surface was comparable to that of lower-energy rigid surface impacts, there were fewer diastatic fractures. This suggests that characteristics of the cranial fracture patterns may be used to differentiate energy level from impact interface in pediatric forensic cases.