Unmanned manufacturing systems has recently gained great interest due to the ever increasing requirements
of optimized machining for the realization of the fourth industrial revolution in manufacturing ‘Industry 4.0’. Real-time tool condition monitoring (TCM) and adaptive control (AC) machining system are essential technologies to achieve the required industrial competitive advantage, in terms of reducing cost, increasing productivity, improving quality, and preventing damage to the machined part. New AC systems aim at controlling the process parameters, based on estimating the effects of the sensed real-time machining load on
the tool and part integrity. Such an aspect cannot be directly monitored during the machining operation in
an industrial environment, which necessitates developing new intelligent model-based process controllers.
The new generations of TCM systems target accurate detection of systematic tool wear growth, as well as
the prediction of sudden tool failure before damage to the part takes place. This requires applying advanced signal processing techniques to multi-sensor feedback signals, in addition to using ultra-high speed controllers to facilitate robust online decision making within the very short time span (in the order of 10 ms) for high speed machining processes. The development of new generations of Intelligent AC and TCM systems involves developing robust and swift communication of such systems with the CNC machine controller. However, further research is needed to develop the industrial internet of things (IIOT) readiness of such systems, which provides
a tremendous potential for increased process reliability, efficiency and sustainability.