Enhancing the operational resilience of the distribution system network (DSN) proactively in a hurricane-prone region requires a pre-hurricane event DSN optimization model, built on accurate hurricaneinduced DSN line fault prediction scenarios. In the past, the resilience evaluation methods such as statistical sequential and non-sequential Monte Carlo simulation (MCS) contingency-based technique, and Machine learning-based Bayesian Networks (BN) technique, have been proposed to strengthen the operational resilience of the DSN proactively against the forecasted oncoming hurricane events. However, a comparative study is largely unexplored to evaluate which of these two methods is best for proactive operational planning decision-making against the forecasted oncoming hurricane event. In this paper, the Bayesian network (BN) and combined statistical DSN's Fragility-curve(FC)-Monte Carlo simulation (MCS)-Scenario reduction (SCENRED) predictive algorithms were developed. The DSN line fault prediction scenarios simulated leveraging the predicted oncoming hurricane Ewiniar data were utilized to perform pre-hurricane DSN optimization to proactively decrease the DSN expected load loss. The pre-event system optimization problems were formulated in a mixed integer linear programming (MILP) approach and solved using a CPLEX solver in general algebraic modelling system (GAMS) on a redesigned 48-bus DSN. The simulated initial expected load loss of 39% of 35 MWh was decreased to 35.34%, and then to 30.71% with the use of combined statistical DSN's FC-MCS-SCENRED, and the BN-DSN predictive models. These results were validated using the Electrical transient analyzer program (ETAP).This study confirmed that the BN-DSN predictive model is a better operational planning tool compared to combined statistical DSN's line FC-MCS-SCENRED predictive model.
RCS "t"Remote-controlled switching time. ω x F Weight factor at load bus "x".
𝐿 𝐷𝑆The binary parameter will be 0, at a damaged scenario (s) of the line′𝑙′. V max, V min Maximum and minimum operational constrained voltage(s).
S maxGrid maximum apparent power ,max ,min , DG DG xx
PPThe maximum and minimum real power output of the DGs at bus "x".