Terahertz technologies are attracting strong interest from high-end industrial fields, and particularly for non-destructive-testing purposes. Currently lacking compactness, integrability as well as adaptability for those implementations, the development and commercialisation of more efficient sources and detectors progressively ensure the transition toward applicative implementations, especially for real-time full-field imaging. In this work, a flexible illumination system, based on fast beam steering has been developed and characterized. Its primary goal is to suppress interferences induced by the coherence length of certain terahertz sources, spoiling terahertz images. The second goal is to ensure an enhanced signal-to-noise ratio on the detector side by the full use and optimized distribution of the available power. This system provides a homogeneous and adjustable illumination through a simplified setup to guarantee optimum real-time imaging capabilities, tailored to the sample under inspection. Working toward industrial implementations, different illumination process are conveniently assessed as a result of the versatility of this method.