Background
In this study, the effect of static magnetic fields (SMFs) on improving the performance of activated sludge process to enhance the higher rate of microbial growth biomass and improve sludge settling characteristics in real operation conditions of wastewater treatment plants has been investigated. The effect of SMFs (15 mT), hydraulic retention time, SRT, aeration time on mixed liquor suspended solids (MLSS) concentrations, mixed liquor volatile suspended solids (MLVSS) concentrations, α-factor, and pH in the complete-mix activated sludge (CMAS) process during 30 days of the operation, were evaluated.
Results
There were not any differences between the concentration of MLSS in the case (2148.8 ± 235.6 mg/L) and control (2260.1 ± 296.0 mg/L) samples, however, the mean concentration of MLVSS in the case (1463.4 ± 419.2 mg/L) was more than the control samples (1244.1 ± 295.5 mg/L). Changes of the concentration of MLVSS over time, follow the first and second-order reaction with and without exposure of SMFs respectively. Moreover, the slope of the line and, the mean of α-factor in the case samples were 6.255 and, − 0.001 higher than the control samples, respectively. Changes in pH in both groups of the reactors were not observed. The size of the sluge flocs (1.28 µm) and, the spectra of amid I' (1440 cm−1) and II' (1650 cm−1) areas related to hydrogenase bond in the case samples were higher than the control samples.
Conclusions
SMFs have a potential to being considered as an alternative method to stimulate the microbial growth rate in the aeration reactors and produce bioflocs with the higher density in the second clarifiers.