Today more than 400 light water power reactors (LWRs) operate worldwide providing approximately 17% of the world's electricity demand. One important component for their successful operation is the fuel tube, made out of a zirconium alloy. A huge number of out-of-pile and in-pile experiments have been performed to improve step by step the fuel for higher burn-up and to reduce the failure rates of fuel pins close to zero. The influencing parameters for excellent or poor cladding behaviour are numerous and sometimes counteract each other. The process of cladding corrosion is slow, difficult to follow, the mechanistic understanding at best incomplete. A vast amount of literature documents the abundant tests and comes up with hypotheses and models for the materials behaviour. PSI has supported for the past 20 years the development of high burn-up fuel cladding by microstructural research studies and service work in post-irradiation examination of test pins. This article reviews the development of the cladding tubes, focussing on the chemical and materials science aspects.