To help stakeholders plan, research, and develop Hybrid Renewable Energy Systems (HRES), the elaboration of numerous modelling techniques and software simulation tools has been reported. The thorough analysis of these undoubtedly complex systems is strongly correlated with the efficient utilisation of the potential of renewable energy and the meticulous development of pertinent designs. In this context, various optimisation constraints/targets have also been utilised. This specific work initially carries out a thorough review of the modelling techniques and simulation software developed in an attempt to define a commonly accepted categorisation methodology for the various existing HRES simulation methods. Moreover, the widely utilised optimisation targets are analysed in detail. Finally, it identifies the sensitivity of two commercial software tools (HOMER Pro and iHOGA) by examining nine case studies based on different wind and solar potential combinations. The results obtained by the two commercial tools are compared with the ESA Microgrid Simulator, a software developed by the Soft Energy Applications and Environmental Protection Laboratory of the Mechanical Engineering Department of the University of West Attica. The evaluation of the results, based on the diversification of the renewable energy potential used as input, has led to an in-depth assessment of the deviances detected in the software tools selected.