Exoskeleton robotics has ushered in a new era of modern neuromuscular rehabilitation engineering and assistive technology research. The technology promises to improve the upper-limb functionalities required for performing activities of daily living. The exoskeleton technology is evolving quickly but still needs interdisciplinary research to solve technical challenges, e.g., kinematic compatibility and development of effective human–robot interaction. In this paper, the recent development in upper-limb exoskeletons is reviewed. The key challenges involved in the development of assistive exoskeletons are highlighted by comparing available solutions. This paper provides a general classification, comparisons, and overview of the mechatronic designs of upper-limb exoskeletons. In addition, a brief overview of the control modalities for upper-limb exoskeletons is also presented in this paper. A discussion on the future directions of research is included.