This study was conducted to confirm an effect of span length on bending properties of larch dimensional lumber in the four point bending test. The size of specimen in this study was 38 (width) × 89 (depth) × 3,600 (length) mm 3 , and average air-dry density and moisture content of the specimens was 543.5 kg/m 3 and 10.5%, respectively. Visually graded No. 1 dimensional lumbers of 248 were divided by two groups to compare modulus of rupture (MOR) and modulus of elasticity (MOE). One group was tested in the four point bending test with span length of 1,650 mm, and other was tested with span length of 3,000 mm. While MOE was not different according to span length in 5% significance level, MOR was different in accordance with span lengths and was in inverse proportion to change of span length. Fifth percentiles of MOR in span length of 1,650 and 3,000 mm were 28.65 and 25.70 MPa, respectively. It was confirmed that the difference between MORs in each case increased as normalized rank increased. This is because of size effect in Weibull weakest link failure theory. Therefore, KS F 2150, in which there is only regulation about span to depth ratio of 15 or more, is needed to be revised to contain a method considering size effect for MOR. From the method, various results of bending test with different size of lumber could be used to determine design value of lumber.