Abstract-One of the main issues for the operation of the LHC accelerator at CERN is the field errors generated by persistent and coupling currents in the main dipoles at injection conditions, i.e., 0.54 T dipole field. For this reason we are conducting systematic magnetic field measurements to quantify the above effects and compare them to the expected values from measurement on strands and cables. We discuss the results in terms of DC effects from persistent current magnetization, AC effects with short time constant from strand and cable coupling currents, and long-term decay during constant current excitation. Average and spread of the measured field errors over the population of magnets tested are as expected or smaller. Field decay at injection, and subsequent snap-back, show for the moment the largest variation from magnet to magnet, with weak correlation to parameters that can be controlled during production. For this reason these effects are likely to result in the largest spread of field errors over the whole dipole production.