Off-grid hybrid renewable energy systems represent the most modern and flexible solutions that can cover a wide range of energy efficiency needs for household consumers. In the current context, these systems must be taken into account by most household consumers, given the fact that the price of energy has increased. This paper proposes an experimental analysis of the behavior of such a system, in real operating conditions, considering two renewable energy sources, wind and photovoltaic sources, using an experimental stand. It can be considered a testing platform for hybrid energy production systems, in that the power installed in the two sources can be scaled up. The platform has the advantage of allowing the implementation of different load and wind curves through a programmable logic controller; in this way, it is possible to evaluate the degree of coverage of the energy consumption produced from renewable sources, in the north-east of Romania, in the Suceava County region. The experimental study also involves an analysis of the storage capacity in relation to the consumption and the electricity produced by the two renewable sources. In this regard, three scenarios differentiated by the state of charge (30%, 50% and 70%) have been established. The results indicate that, for each of the imposed scenarios, the energy required to cover consumption is produced by renewable energy sources (42%, 47% and 53%), to which the energy stored in batteries (39%, 28% and 18%) is added.