2015
DOI: 10.7465/jkdi.2015.26.2.495
|View full text |Cite
|
Sign up to set email alerts
|

Review on statistical methods for large spatial Gaussian data

Abstract: The Gaussian geostatistical model has been widely used for modeling spatial data. However, this model suffers from a severe difficulty in computation because inference requires to invert a large covariance matrix in evaluating log-likelihood. In addressing this computational challenge, three strategies have been employed: likelihood approximation, lower dimensional space approximation, and Markov random field approximation. In this paper, we reviewed statistical approaches attacking the computational challenge… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 21 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?