Alzheimer, Parkinson and other neurodegenerative diseases involve a series of brain
proteins, referred to as ‘amyloidogenic proteins’, with exceptional
conformational plasticity and a high propensity for self-aggregation. Although the
mechanisms by which amyloidogenic proteins kill neural cells are not fully understood, a
common feature is the concentration of unstructured amyloidogenic monomers on
bidimensional membrane lattices. Membrane-bound monomers undergo a series of
lipid-dependent conformational changes, leading to the formation of oligomers of varying
toxicity rich in β-sheet structures (annular pores, amyloid fibrils) or in
α-helix structures (transmembrane channels). Condensed membrane nano- or
microdomains formed by sphingolipids and cholesterol are privileged sites for the binding
and oligomerisation of amyloidogenic proteins. By controlling the balance between
unstructured monomers and α or β conformers (the chaperone effect),
sphingolipids can either inhibit or stimulate the oligomerisation of amyloidogenic
proteins. Cholesterol has a dual role: regulation of protein–sphingolipid
interactions through a fine tuning of sphingolipid conformation (indirect effect), and
facilitation of pore (or channel) formation through direct binding to amyloidogenic
proteins. Deciphering this complex network of molecular interactions in the context of
age- and disease-related evolution of brain lipid expression will help understanding of
how amyloidogenic proteins induce neural toxicity and will stimulate the development of
innovative therapies for neurodegenerative diseases.