Membrane nucleation, a higher dimensional analog of the Schwinger effect, is a useful toy model for vacuum decay. While a non-perturbative effect, the computation of nucleation rates has only been accomplished at weak coupling in the field theory. Here we compute the nucleation rates of spherical membranes using AdS/CFT duality, thus naturally including the effects of strong coupling. More precisely, we consider the nucleation of spherical membranes coupled to an antisymmetric tensor field, a process which renders the vacuum unstable above a critical value of the field strength. We analyze membrane creation in flat and de Sitter space using various foliations of AdS. This is accomplished via instanton methods, where the rate of nucleation is dominated by the semi-classical on-shell Euclidean action. Our findings generalize the holographic Schwinger effect and provide a step toward holographic false vacuum decay mediated by Coleman-De Luccia instantons.