Traumatic brain injury is often associated with a direct or secondary neurovascular pathology. In this review, we present recent advancements in endovascular neurosurgery that enable accurate and effective vessel reconstruction with emphasis on its role in early diagnosis, the expanding use of flow diversion in pseudoaneurysms, and traumatic arteriovenous fistulas. In addition, future directions in which catheter-based interventions could potentially affect traumatic brain injury are described: targeting blood brain barrier integrity using the advantages of intra-arterial drug delivery of blood brain barrier stabilizers to prevent secondary brain edema, exploring the impact of endovascular venous access as a means to modulate venous outflow in an attempt to reduce intracranial pressure and augment brain perfusion, applying selective intra-arterial hypothermia as a neuroprotection method mitigating some of the risks conferred by systemic cooling, trans-vessel wall delivery of regenerative therapy agents, and shifting attention using multimodal neuromonitoring to post-traumatic vasospasm to further characterize the role it plays in secondary brain injury. Thus, we believe that the potential of endovascular tools can be expanded because they enable access to the “highways” governing perfusion and flow and call for further research focused on exploring these routes because it may contribute to novel endovascular approaches currently used for treating injured vessels, harnessing them for treatment of the injured brain.