Field capacity is a dubious soil physical property, but its use continues because of its perceived value for representing a soil's capacity to store water. Appropriate field capacity estimates can be useful for interpreting data from soil moisture sensors, including those in large‐scale monitoring networks, but suitable methods for defining field capacity in this context are unclear. Motivated by the desire to determine optimal field capacity values for the Oklahoma Mesonet, our objectives were (1) to develop and apply an automated time series analysis algorithm to estimate volumetric soil water content at field capacity and corresponding matric potential and (2) to compare the resulting water contents to those calculated from traditional matric potential thresholds (−33 and −10 kPa). Across 118 Oklahoma Mesonet sites and three soil depths (5, 25, and 60 cm), a matric potential threshold of −10 kPa underestimated field capacity water content by 0.010–0.014 cm cm−3 (3–4%) on average, and a threshold of −33 kPa underestimated it for every site and depth by 0.055–0.078 cm cm−3 (16%−22%) on average. Median matric potentials corresponding to field capacity were −7.6 kPa at the 5‐cm depth, −7.2 kPa at the 25‐cm depth, and −7.3 kPa at the 60‐cm depth. The algorithm developed here can be used to estimate field capacity wherever adequate data are available, and for sites where soil water retention properties are known, matric potentials at field capacity can also be estimated. Using a matric potential of −33 kPa as a standard threshold to represent field capacity is not scientifically justified and should be discontinued.