While many recent advances in deep reinforcement learning rely on model-free methods, model-based approaches remain an alluring prospect for their potential to exploit unsupervised data to learn environment dynamics. One prospect is to pursue hybrid approaches, as in AlphaGo, which combines Monte-Carlo Tree Search (MCTS)-a model-based methodwith deep-Q networks (DQNs)-a model-free method. MCTS requires generating rollouts, which is computationally expensive. In this paper, we propose to simulate roll-outs, exploiting the latest breakthroughs in image-to-image transduction, namely Pix2Pix GANs, to predict the dynamics of the environment. Our proposed algorithm, generative adversarial tree search (GATS), simulates rollouts up to a specified depth using both a GAN-based dynamics model and a reward predictor. GATS employs MCTS for planning over the simulated samples and uses DQN to estimate the Q-function at the leaf states. Our theoretical analysis establishes some favorable properties of GATS vis-a-vis the bias-variance trade-off and empirical results show that on 5 popular Atari games, the dynamics and reward predictors converge quickly to accurate solutions. However, GATS fails to outperform DQNs. Notably, in these experiments, MCTS has only short rollouts (up to tree depth 4), while previous successes of MCTS have involved tree depth in the hundreds. We present a hypothesis for why tree search with short rollouts can fail even given perfect modeling.