This paper introduces an efficient approach to integrating non-local statistics into the higher-order Markov Random Fields (MRFs) framework. Motivated by the observation that many non-local statistics (e.g., shape priors, color distributions) can usually be represented by a small number of parameters, we reformulate the higher-order MRF model by introducing additional latent variables to represent the intrinsic dimensions of the higher-order cliques. The resulting new model, called NC-MRF, not only provides the flexibility in representing the configurations of higher-order cliques, but also automatically decomposes the energy function into less coupled terms, allowing us to design an efficient algorithmic framework for maximum a posteriori (MAP) inference. Based on this novel modeling/inference framework, we achieve state-of-the-art solutions to the challenging problems of class-specific image segmentation and template-based 3D facial expression tracking, which demonstrate the potential of our approach.