Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Understanding the spreading dynamics of compound droplets is crucial for emerging applications like micromixers, microreactors, and mechanoresponsive artificial cells. Integrating magnetic fields expands the potential of these technologies in soft robotics and medical imaging. Despite extensive research on individual droplets, the magnetowetting processes of compound droplets on hydrophobic surfaces remain underexplored. To address this gap, we use a finite element framework to conduct numerical simulations, focusing on the spreading behavior of compound droplets on hydrophobic surfaces under magnetic fields. Our approach is validated against experimental and theoretical paradigms from existing single-droplet studies. Additionally, we verify our model for the temporal evolution of compound droplet wetting in the absence of magnetic fields against existing numerical results. This research systematically explores wetting behaviors and shell fluid disintegration by manipulating key parameters, including magnetic field intensity and inner-to-outer droplet size ratios. These findings have significant implications for enhancing magnetically controlled soft fluidic systems, particularly in digital microfluidics and drug development.
Understanding the spreading dynamics of compound droplets is crucial for emerging applications like micromixers, microreactors, and mechanoresponsive artificial cells. Integrating magnetic fields expands the potential of these technologies in soft robotics and medical imaging. Despite extensive research on individual droplets, the magnetowetting processes of compound droplets on hydrophobic surfaces remain underexplored. To address this gap, we use a finite element framework to conduct numerical simulations, focusing on the spreading behavior of compound droplets on hydrophobic surfaces under magnetic fields. Our approach is validated against experimental and theoretical paradigms from existing single-droplet studies. Additionally, we verify our model for the temporal evolution of compound droplet wetting in the absence of magnetic fields against existing numerical results. This research systematically explores wetting behaviors and shell fluid disintegration by manipulating key parameters, including magnetic field intensity and inner-to-outer droplet size ratios. These findings have significant implications for enhancing magnetically controlled soft fluidic systems, particularly in digital microfluidics and drug development.
Extensional flow is vital in droplet dynamics, influencing their formation, size, stability, and functionality across diverse applications from industrial processes to biomedical technology. Ferrofluid droplets are pivotal in many such applications, where magnetic fields enable non-contact manipulation without undesirable heating effects. However, controlling ferrofluid droplet dynamics in magnetically influenced extensional flows is challenging due to the complex interplay of induced magnetization, intrinsic magnetic properties, and flow kinematics. Here, we present a first-principle-based theory delving into the morphology of a ferrofluid droplet under the combined influence of an external magnetic field and extensional flow. Unlike previous studies, we employ an asymptotic analysis that delves on the shape alterations by considering local magnetization as dependent on magnetic field intensity. Additionally, we develop a numerical model based on phase-field hydrodynamics to establish the practical applicability of the asymptotic solution and to explore large droplet-deformation regimes. The study demonstrates that increasing the magnetic field intensity, the saturation magnetization of the ferrofluid, and the initial magnetic susceptibility each independently improve droplet deformation. Additionally, we found that in a uniform magnetic field, the extensional viscosity of a ferrofluid emulsion is influenced by the strain rate, leading to strain-thickening behavior in the dilute emulsion. Our findings offer new insights into field-assisted manipulation of ferrofluid droplets, emphasizing their potential in applications ranging from process engineering to biomedical technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.