Some clinical case reports have shown that immature permanent teeth with periradicular periodontitis or abscess can undergo apexogenesis after conservative endodontic treatment. A call for a paradigm shift and new protocol for the clinical management of these cases has been brought to attention. Concomitantly, a new population of mesenchymal stem cells residing in the apical papilla of permanent immature teeth recently has been discovered and was termed stem cells from the apical papilla (SCAP). These stem cells appear to be the source of odontoblasts that are responsible for the formation of root dentin. Conservation of these stem cells when treating immature teeth may allow continuous formation of the root to completion. This article reviews current findings on the isolation and characterization of these stem cells. The potential role of these stem cells in the following respects will be discussed: (1) their contribution in continued root maturation in endodontically treated immature teeth with periradicular periodontitis or abscess and (2) their potential utilization for pulp/ dentin regeneration and bioroot engineering.
KeywordsApexogenesis; apical papilla; bioroot engineering; dental pulp stem cells; immature teeth; periodontal ligament stem cells; pulp regeneration; stem cells from human exfoliated deciduous teeth; stem cells from the apical papilla A number of recent clinical case reports have revealed the possibilities that many teeth that traditionally would receive apexification may be treated for apexogenesis. A call for a paradigm shift and new protocol for the clinical management of these cases has been made by the authors (1-3). A recent scientific finding, which may explain in part why apexogenesis can occur in these infected immature permanent teeth, is the discovery and isolation of a new population of mesenchymal stem cells (MSCs) residing in the apical papilla of incompletely developed teeth (4,5). These cells are termed stem cells from the apical papilla (SCAP), and they differentiate