The low-speed flowfield for a generic unmanned combat air vehicle (UCAV) is investigated both experimentally and numerically. A wind tunnel experiment was conducted with the Boeing 1301 UCAV at a variety of angles of attack up to 70 degrees, both statically and with various frequencies of pitch oscillation (0.5, 1.0, and 2.0 Hz). In addition, pitching was performed about three longitudinal locations on the configuration (the nose, 35% MAC, and the tail). Solutions to the unsteady, laminar, compressible Navier-Stokes equations were obtained on an unstructured mesh to match results from the static and dynamic experiments. The computational results are compared with experimental results for both static and pitching cases. Details about the flowfield, including vortex formation and interaction, are shown and discussed, including the non-linear aerodynamic characteristics of the vehicle. Published by Elsevier Masson SAS.