The generation of secondary vortices from a wall-bounded vorticity sheet is a frequent occurrence in vortex ring–structure interactions. Such interactions arise in both engineering and biomedical applications, including tracheoesophageal speech. This study investigated the evolution of secondary vorticity following impact of an axisymmetric vortex ring on a concave hemicylindrical cavity. A primary vortex ring (PVR) with a formation number of F=2.00 and Reynolds number of ReΓ=1500 was generated within a water tank. Five different ratios of hemicylindrical cavity radius (Rcyl) to PVR radius (Rv) were examined; namely, γ=4, 3, 212, 2, and 112. Flow visualization and particle image velocimetry analysis of the scenarios revealed the asymmetric impact of the PVR on the cavity surface. This asymmetric impact leads to distinctive flow dynamics in the evolution of secondary vorticity across both the transverse and longitudinal planes. In the transverse plane, the PVR impact generated a secondary vortex ring (SVR) and a tertiary vortex ring (TVR). Following generation, the SVR and TVR rotated completely around the PVR. In the longitudinal plane, the SVR produced a horseshoe-like loop instead of rotating around the PVR completely. For γ=4, 3, and 212, the SVR loop moved upward due to self-induction. For γ=2 and 112, the legs of the SVR horseshoe-like loop experienced reconnection and produced two new vortex rings. The upward trajectory of the SVR horseshoe-like loop varied with γ, tending to move further from the primary ring's axis as γ decreased.