ClpB/Hsp100 is an ATP-dependent disaggregase that solubilizes and reactivates protein aggregates in cooperation with the DnaK/ Hsp70 chaperone system. The ClpB-substrate interaction is mediated by conserved tyrosine residues located in flexible loops in nucleotide-binding domain-1 that extend into the ClpB central pore. In addition to the tyrosines, the ClpB N-terminal domain (NTD) was suggested to provide a second substrate-binding site; however, the manner in which the NTD recognizes and binds substrate proteins has remained elusive. Herein, we present an NMR spectroscopy study to structurally characterize the NTD-substrate interaction. We show that the NTD includes a substrate-binding groove that specifically recognizes exposed hydrophobic stretches in unfolded or aggregated client proteins. Using an optimized segmental labeling technique in combination with methyl-transverse relaxation optimized spectroscopy (TROSY) NMR, the interaction of client proteins with both the NTD and the pore-loop tyrosines in the 580-kDa ClpB hexamer has been characterized. Unlike contacts with the tyrosines, the NTD-substrate interaction is independent of the ClpB nucleotide state and protein conformational changes that result from ATP hydrolysis. The NTD interaction destabilizes client proteins, priming them for subsequent unfolding and translocation. Mutations in the NTD substrate-binding groove are shown to have a dramatic effect on protein translocation through the ClpB central pore, suggesting that, before their interaction with substrates, the NTDs block the translocation channel. Together, our findings provide both a detailed characterization of the NTD-substrate complex and insight into the functional regulatory role of the ClpB NTD in protein disaggregation.T he heat shock protein ClpB (Escherichia coli) or Hsp100 (eukaryotes) is the main protein disaggregase in bacteria, yeast, plants, and mitochondria of all eukaryotic cells, and it is essential for cell survival during severe stress (1-4). Recovery of functional proteins from aggregates by ClpB requires the synergistic interaction with a second molecular chaperone, DnaK (1). Through its cochaperone, DnaJ, DnaK initially binds to the aggregates, leading to the exposure of peptide segments that can be recognized by ClpB (5, 6). DnaK then recruits ClpB to the site of aggregation through direct physical interaction (7, 8), transferring the aggregate to ClpB. Using the energy derived from ATP hydrolysis, ClpB unravels the aggregate by threading single polypeptide chains, one at a time, through the central pore of its hexameric ring (9). Once released from the aggregate, the unfolded polypeptides can either refold spontaneously or fold with the help of additional cellular chaperones.Like other Hsp100 proteins, ClpB forms a hexameric ring, with each protomer comprising an N-terminal domain (NTD) and two nucleotide binding domains (NBD1 and NBD2) separated by a unique regulatory coil-coil domain (10) essential for DnaK binding (7, 11) ( Fig. 1 A and B). Both NBDs contain Walk...