2019 International Conference on Electrical, Computer and Communication Engineering (ECCE) 2019
DOI: 10.1109/ecace.2019.8679376
|View full text |Cite
|
Sign up to set email alerts
|

RFM Based Market Segmentation Approach Using Advanced K-means and Agglomerative Clustering: A Comparative Study

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
9
0
5

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 22 publications
(14 citation statements)
references
References 11 publications
0
9
0
5
Order By: Relevance
“…In addition, Ghosal et al (2020), in their review, present K-Means and hierarchical algorithms as the most common methods for a market analysis. Exemplary studies using clustering algorithms such as K-Means, Ward, agglomerative clustering, or modified K-Means models and as selected features recency, frequency, and monetary variables, often referred as RFM model, are given by Shihab et al (2019); Abdulhafedh (2021); Aktaş et al (2021); and Christy et al (2021). In addition to an application of K-Means and Ward, Abdulhafedh (2021) utilizes a Principal Component Analysis and Aktaş et al (2021) also include GMMs and Spectral Clustering in their benchmarking.…”
Section: State-of-the-art Approaches and Methods In Customer Segmenta...mentioning
confidence: 99%
“…In addition, Ghosal et al (2020), in their review, present K-Means and hierarchical algorithms as the most common methods for a market analysis. Exemplary studies using clustering algorithms such as K-Means, Ward, agglomerative clustering, or modified K-Means models and as selected features recency, frequency, and monetary variables, often referred as RFM model, are given by Shihab et al (2019); Abdulhafedh (2021); Aktaş et al (2021); and Christy et al (2021). In addition to an application of K-Means and Ward, Abdulhafedh (2021) utilizes a Principal Component Analysis and Aktaş et al (2021) also include GMMs and Spectral Clustering in their benchmarking.…”
Section: State-of-the-art Approaches and Methods In Customer Segmenta...mentioning
confidence: 99%
“…Penggunaan algoritma clustering sudah pernah dilakukan pada penelitian-penelitian sebelumnya, yaitu penggunaan sistem clustering untuk memudahkan proses identifikasi bahan menu makanan halal (Sucipto et al, 2021) (Fitriana et al, 2017); Penerapan sistem intelijensia bisnis yang dipadukan dengan metode K-Means pada bagian pemasaran di pabrik roti (Fitriana et al, 2018); Segmentasi pelanggan dilakukan menggunakan algoritma clustering untuk menganalisis perilaku pelanggan dan mengelompokkannya (Aryuni et al, 2018;Maryani et al, 2018;Shihab et al, 2019;Syakur et al, 2017); Pemanfaatan clustering untuk mengelompokkan berbagai jenis pekerjaan yang diminati oleh pencari kerja menggunakan K-Means clustering (Shamrat et al, 2020); Perbandingan validasi algoritma K-Medoids dengan K-Means dengan menggunakan Silhoutte Coefficient Index dalam mengelompokkan wilayah cacat pada anak (Marlina et al, 2018); Perbandingan atara algoritma K-Medoids dan algoritma K-Means untuk pengelompokan menu masakan bahan-bahan dari ikan dengan pemilihan algoritma terbaik berdasarkan nilai Davies Bouldin Index (Suarna et al, 2021); Analisis komparatif K-Means dengan K-Medoids dari kedua algoritma dalam kelompok data yang berbeda untuk menjelaskan kekuatan dan kelemahan keduanya (Arbin et al, 2015); Evaluasi kinerja algoritma K-Means dasar dilakukan dengan menggunakan berbagai distance metrics (Thakare dan Bagal, 2015); Peningkatan hasil clustering berdasarkan Davies Bouldin Index dalam menentukan centroid awal pada algoritma K-Means (Sitompul et al, 2019).…”
Section: Abstrakunclassified
“…The resulting two groups were categorized based on frequency and the target customers would be offered some special offers to achieve the marketing goals of the organization [5]. An analysis with agglomerative, K-means and an advanced version of K-means clustering were carried out for RFM based market segmentation approach in [6]. Although aimed at direct marketing, Mohammad Amini et al proposed a classification method which removes the imbalance of data using a combination of clustering and under-sampling.…”
Section: Introductionmentioning
confidence: 99%