2021
DOI: 10.1007/s11554-021-01170-3
|View full text |Cite
|
Sign up to set email alerts
|

RFSOD: a lightweight single-stage detector for real-time embedded applications to detect small-size objects

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(3 citation statements)
references
References 50 publications
0
3
0
Order By: Relevance
“…(AI20) [127] 18.6 -ViT-FRCNN (arXiv20) [107] -17.8 DETR (ECCV20) [110] -21.9 DETR-DC5 -23.7 Deformable DETR (arXiv20) [115] -26.4 Two Stage Deformable DETR (arXiv20) [115] -28.8 Full Deformable DETR (arXiv20) [115] -34.4 ATSS (CVPR20) [281] -33.2 YOLOv5s [37] -18.8 TSD (CVPR20) [282] -33.8 STDnet-C3 (EAAI20) [137] 11.4 + 5.5 + YOLOS (NIPS21) [108] -19.5 UP-DETR (CVPR21) [117] -20.8 SOF-DETR [116] -21.7 ViDT w.o. Neck (arXiv21) [109] -21.9 ViDT (arXiv21) [109] -30.6 SMCA (ICCV21) [283] 22.8 -DETR-GQPos (arXiv21) [113] 23.1 -DETR-GQPos-SiA (arXiv21) [113] 24.4 -FP-DETR (ICLR22) [118] -27.5 SODNet (RS22) [125] -20.1 RFSOD (RTIP22) [120] 59.09 * -RFSODTL (RTIP22) [120] 56.42 * -QueryDet (CVPR22) [136] -25.24 RESC (NCA22) [119] -26.2 D 2 ETR (arXiv22) [112] -22 Deformable D 2 ETR (arXiv22) [112] -31.7 TABLE 6: Detection performance (%) for small-scale objects on USC-GRAD-STDdb video dataset [137]. +k indicates that the anchors were defined by the k-means algorithm and the " * " indicates that they were run on Caffe2 framework.…”
Section: Generic Sod Performance Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…(AI20) [127] 18.6 -ViT-FRCNN (arXiv20) [107] -17.8 DETR (ECCV20) [110] -21.9 DETR-DC5 -23.7 Deformable DETR (arXiv20) [115] -26.4 Two Stage Deformable DETR (arXiv20) [115] -28.8 Full Deformable DETR (arXiv20) [115] -34.4 ATSS (CVPR20) [281] -33.2 YOLOv5s [37] -18.8 TSD (CVPR20) [282] -33.8 STDnet-C3 (EAAI20) [137] 11.4 + 5.5 + YOLOS (NIPS21) [108] -19.5 UP-DETR (CVPR21) [117] -20.8 SOF-DETR [116] -21.7 ViDT w.o. Neck (arXiv21) [109] -21.9 ViDT (arXiv21) [109] -30.6 SMCA (ICCV21) [283] 22.8 -DETR-GQPos (arXiv21) [113] 23.1 -DETR-GQPos-SiA (arXiv21) [113] 24.4 -FP-DETR (ICLR22) [118] -27.5 SODNet (RS22) [125] -20.1 RFSOD (RTIP22) [120] 59.09 * -RFSODTL (RTIP22) [120] 56.42 * -QueryDet (CVPR22) [136] -25.24 RESC (NCA22) [119] -26.2 D 2 ETR (arXiv22) [112] -22 Deformable D 2 ETR (arXiv22) [112] -31.7 TABLE 6: Detection performance (%) for small-scale objects on USC-GRAD-STDdb video dataset [137]. +k indicates that the anchors were defined by the k-means algorithm and the " * " indicates that they were run on Caffe2 framework.…”
Section: Generic Sod Performance Resultsmentioning
confidence: 99%
“…Multi-scale feature learning is one of the most common approaches for SOD, and several architectures have been developed to support it. Amudhan et al [120] introduced RFSOD, a lightweight single-stage detector that can be used in embedded systems for real time applications. RFSOD's architecture is similar to that of the YOLO detector, and uses 3 × 3 and 1 × 1 convolutions for lightweight detection.…”
Section: Feature Learningmentioning
confidence: 99%
“…1 the basic design of a twostage detector [26]. As a result, one-stage detectors [27]may be employed in real-time devices since they suggest predicted boxes straight from input pictures without requiring a region proposal phase. One-stage detectors' fundamental construction is shown in Fig.…”
Section: Introductionmentioning
confidence: 99%