We report the regioselective carbonylation of 2,2-disubstituted epoxides to β,β-disubstituted β-lactones. Mechanistic studies revealed epoxide ring-opening as the turnover limiting step, an insight that facilitated the development of improved reaction conditions using weakly donating, ethereal solvents. A wide range of epoxides can be carbonylated to β-lactones, which are subsequently ringopened to produce ketone-based aldol adducts, providing an alternative to the Mukaiyama aldol reaction. Enantiopure epoxides were demonstrated to undergo the carbonylation/ringopening process with retention of stereochemistry to form enantiopure β-hydroxy esters.