The correlation between interfacial properties and emulsion microstructure is a topic of special interest that has many industrial applications. This study deals with the comparison between the rheological properties of oil-water interfaces with adsorbed proteins from legumes (chickpea or faba bean) and the properties of the emulsions using them as the only emulsifier, both at microscopic (droplet size distribution) and macroscopic level (linear viscoelasticity). Two different pH values (2.5 and 7.5) were studied as a function of storage time. Interfaces were characterized by means of dilatational and interfacial shear rheology measurements. Subsequently, the microstructure of the final emulsions obtained was evaluated thorough droplet size distribution (DSD), light scattering and rheological measurements. Results obtained evidenced that pH value has a strong influence on interfacial properties and emulsion microstructure. The best interfacial results were obtained for the lower pH value using chickpea protein, which also corresponded to smaller droplet sizes, higher viscoelastic moduli, and higher emulsion stability. Thus, results put forward the relevance of the interfacial tension values, the adsorption kinetics, the viscoelastic properties of the interfacial film, and the electrostatic interactions among droplets, which depend on pH and the type of protein, on the microstructure, rheological properties, and stability of legume protein-stabilized emulsions.