We describe herein the use of octadecyltrimethylammonium-templated aluminosilicate (designated as LS) as a thickener to induce gelation. LS samples with different aluminum/silicon molar ratios (Al/Si = 0, 0.05, 0.10, 0.15, 0.20) were synthesized hydrothermally and characterized by X-ray diffraction analysis, 27Al MAS NMR spectra, elemental analysis, and scanning electron microscopy. The aluminum/silicon molar ratio was shown to be an important factor affecting the rheological properties of LS gels. With increasing Al/Si molar ratio, the viscoelasticity and structural strength of LS gel were enhanced, the dropping point increased, and the amount of oil separation decreased. LS(0.20) gel exhibited superior relative elastic character. The strength of the LS(0.20) gel was also enhanced with increasing LS(0.20) content. In SRV tests, LS(0.20) gel with different contents showed good performance in terms of load-bearing ability and anti-wear property, indicating that LS was strongly adhered on the friction surface, and thereby promoted lubrication. Owing to simple preparation, the promising rheological and tribological properties, LS gel hold great potential application in lubricating grease.