Nanostructured films of TiO 2 are becoming more and more attractive as a consequence of their improved sensing properties. Screen printing represents an important low-cost alternative for the production of high-performance devices for the automotive industry. However, to obtain films with superior properties, the composition and each step of the ink production must be carefully controlled. Milling strongly influences the rheological properties of the ink and, as a consequence, the quality of the deposited film. The as-prepared ink was homogenized in a four steps-process with a three-roll mill, and the rheological properties at each intermediate stage were measured. The results showed the dramatic effect of the milling on the flow properties of the nanoink and suggested the importance of a careful control of this step. The rheological behavior of the inks was explained using the basic idea of the transient network theory (TNT) for physically cross-linked networks of polymer solutions. Only an optimized cycle of milling can assure the necessary reproducibility of the ink properties as well as their time stability.