Objective: The aim of this study was to increase penetration of epigallocatechin gallate (EGCG) from green tea leaves extract (Camellia sinensis L. Kuntz) through the skin by formulating the extract into a transfersomal gel (GT).
Methods:Transfersomes were prepared by thin-layer hydration method, with different concentration of the extract that equivalent to 1% (F1), 1.5% (F2), and 2% (F3) of EGCG. A transfersomes formula with good characteristics would be incorporated into a GT. A gel without transfersomes (GNT) was prepared as a control of comparison. Both gels were evaluated their physicochemical properties. An in vitro penetration test using Franz diffusion cell with the skin of female Sprague-Dawley rats was also performed.
Results:The results showed that F1 had the best physicochemical properties. F1 had a spherical shape, D mean volume at 107.82±0.44 nm, polydispersity index at 0.07±0.01, zeta potential at −40.3±0.10 mV, and entrapment efficiency at 63.16±0.65%. Cumulative amount of EGCG penetrated from GT and non-GT (GNT)
Conclusion:It can be concluded that GT could increase the in vitro penetration of EGCG from green tea leaves extract compared to non-transfersomal one.