The rheological behaviour of homogenised fibres originally having different lengths was evaluated. For this purpose, mixtures of pulp fibres and fines were fibrillated mechanically without pretreatment and characterised with regard to morphology and viscosity. It was found that, for all samples, a similar number of homogenisation passes was needed to reach a viscosity plateau. However, the value of the final viscosity differed significantly: homogenised suspensions derived from fines achieved only about 60 % of the viscosity of suspensions derived from pulp. Already after a few homogenisation cycles, no differences between the samples could be measured using optical devices, indicating that fibrillation on the nanometre scale was responsible for the distinct rheological behaviours. Atomic force microscopy measurements indicated significantly reduced fibril lengths for the suspensions derived from fines, which explains their reduced viscosity.