This work aims to meet the growing demand for products made from biomaterials that can minimize the problems of lack of bone tissue resulting from diseases, traffic and/or work accidents and sports, aesthetic and dental practices of both young and old people. In this scenario, hydroxyapatite of bovine origin from animals with traceability from birth to slaughter is of great importance among biomaterials as it presents biocompatibility and great similarity with the human bone structure. The advancement of medical practices in the field of computational imaging has driven personalized planning of bone repairs, which requires, at the same time, the ability to manufacture bodies as complex externally and internally as required.In this work, to contribute to meeting this demand, the aim is to develop mimetic and personalized bone implants. For this purpose, a process was developed to obtain hydroxyapatite of bovine origin, which is transformed into reactive ceramic raw material through calcination and grinding, route which eliminates any biological risk, as a whole additive manufacturing is developed and directed with this material to obtain a body with external (shape, surface, dimension) and internal (communicating porosity for intra-osseous vascularization) characteristics. To meet this perspective, the precursor bovine bone was classified, processed and reinforced to become a bioceramic hydroxyapatite with adequate properties, at a very low cost, renewable and accessible to all countries. A 3D printing machine was developed in the laboratory itself, a top-down type with image projection and photopolymerization in a ceramic paste vat, where the test specimens were printed and validated by printing ceramic pastes developed from low solid loading (15% in volume), up to high solid loadings of the order of 40% by volume. It is possible to conclude that the production of scaffolds, as well as hydroxyapatite mimetic bones of traced bovine origin, presents a promising combination that can meet the mechanical and biological characteristics of implants applied to tissue engineering and that associated with additive manufacturing technological processes can meet the medical need with a commitment to high performance, complexity of form, while being medically safe.