Abstract::
A highly interconnected network of diverse brain regions is necessary for the precise execution of human behaviors, including cognitive, psychiatric, and motor functions. Unfortunately, degeneration of specific brain regions causes several neurodegenerative disorders, but the mechanisms that elicit selective neuronal vulnerability remain unclear. This knowledge gap greatly hinders the development of effective mechanism-based therapies, despite the desperate need for new treatments. Here, we emphasize the importance of the Rhes (Ras homolog-enriched in the striatum) protein as an emerging therapeutic target. Rhes, an atypical small GTPase with a SUMO (small ubiquitin-like modifier) E3-ligase activity, modulates biological processes such as dopaminergic transmission, alters gene expression, and acts as an inhibitor of motor stimuli in the brain striatum. Mutations in the Rhes gene have also been identified in patients with autism and schizophrenia. Moreover, Rhes SUMOylates pathogenic form of mutant huntingtin (mHTT) and tau, enhancing their solubility and cell toxicity in Huntington's disease and tauopathy models. Notably, Rhes uses membrane projections resembling tunneling nanotubes to transport mHTT between cells and Rhes deletion diminishes mHTT spread in the brain. Thus, we predict that effective strategies aimed at diminishing brain Rhes levels will prevent or minimize the abnormalities that occur in HD and tauopathies and potentially in other brain disorders. We review the emerging technologies that enable specific targeting of Rhes in the brain to develop effective disease-modifying therapeutics.