Background
We have shown that rhinovirus (RV), a cause of asthma exacerbations, colocalizes with CD68- and CD11b-positive airway macrophages following experimental infection in humans. We have also shown that RV-induced cytokine expression is abolished in TLR2−/− bone marrow-derived macrophages.
Objective
We hypothesize that TLR2+ macrophages are required and sufficient for RV-induced airway inflammation in vivo.
Methods
To determine the requirement and sufficiency of TLR2 for RV-induced airway responses, naïve and ovalbumin-sensitized and challenged C57BL/6 wild-type and TLR2−/− mice were infected with RV1B followed by IgG or anti-TLR2. Bone marrow chimera experiments using OVA-treated C57BL/6 and TLR2−/− mice were also performed. Finally, naïve TLR2−/− mice underwent intranasal transfer of bone marrow-derived wild type macrophages.
Results
RV1B infection of naïve wild-type mice induced an influx of airway neutrophils and CD11b+ exudative macrophages which was reduced in TLR2−/− mice. In allergen-exposed mice, RV-induced neutrophilic and eosinophilic airway inflammation and hyperresponsiveness were reduced in TLR2−/− and anti-TLR2-treated mice. Transfer of TLR2−/− bone marrow into wild type ovalbumin-treated, C57BL/6 mice blocked RV-induced airway responses, whereas transfer of wild type marrow to TLR2−/− mice restored them. Finally, transfer of wild-type macrophages to naïve TLR2−/− mice was sufficient for neutrophilic inflammation after RV infection, whereas macrophages treated with IL-4 (to induce M2 polarization) were sufficient for eosinophilic inflammation, mucous metaplasia and airways hyperresponsiveness.
Conclusions
TLR2 is required for early inflammatory responses induced by RV, and TLR2+ macrophages are sufficient to confer airway inflammation to TLR2−/− mice, with the pattern of inflammation depending on macrophage activation state.